Session expired

Due to inactivity your session has expired. Please login again.

Wir haben festgestellt, dass Sie unsere Website von China aus besuchen.
Für Ihr Land (China) gibt es eine eigene Version der Website.

Zu China wechseln
 Technologien

O2 assist.

Ihr Präzisionspflege-Assistent

Darstellung von O2 assist

Immer im Einsatz. Kontinuierliches Oxygenierungsmanagement

O2 assist (Nicht für alle Märkte verfügbar.A​) fungiert als Ihr Präzisionspflege-Assistent am Patientenbett. Es unterstützt Sie dabei, die SpO2-Werte des Patienten innerhalb der individuell eingestellten Zielbereiche zu halten, indem es die Sauerstoffzufuhr fortlaufend anpasst. Dies bedeutet ein kontinuierliches und reaktionsschnelles Sauerstoffmanagement für Ihren Patienten und weniger manuelle Anpassungen für Sie (Roca O, Caritg O, Santafé M, et al. Closed-loop oxygen control improves oxygen therapy in acute hypoxemic respiratory failure patients under high flow nasal oxygen: a randomized cross-over study (the HILOOP study). Crit Care. 2022;26(1):108. Published 2022 Apr 14. doi:10.1186/s13054-022-03970-w1​, Atakul G, Ceylan G, Sandal O, et al. Closed-loop oxygen usage during invasive mechanical ventilation of pediatric patients (CLOUDIMPP): a randomized controlled cross-over study. Front Med (Lausanne). 2024;11:1426969. Published 2024 Sep 10. doi:10.3389/fmed.2024.14269692​).

Darstellung von Menschen, die auf eine Blume blasen

Eine vielseitige Lösung. Anwendungen und Patientenzustände

O2 assist ist eine vielseitige Lösung und mit allen invasiven und nichtinvasiven Beatmungsmodi (Mit Ausnahme von CPR und INTELLiVENT®-ASV®B​) sowie mit der High-Flow Sauerstofftherapie kompatibel. Die Funktion wurde für den Gebrauch bei erwachsenen und pädiatrischen Patienten entwickelt sowie für neonatale Patienten ab einem Gestationsalter von 37 Wochen.

Sie eignet sich besonders für den Einsatz bei Patientenzuständen mit fluktuierendem Sauerstoffbedarf wie:

Patienten mit AHRF weisen aufgrund ihres beeinträchtigten Gasaustausches einen fluktuierenden Sauerstoffbedarf auf. O2 assist kann die Sauerstoffzufuhr dynamisch auf diese Veränderungen anpassen und somit die Patienten im optimalen Zielbereich der Sauerstoffsättigung halten (Roca O, Caritg O, Santafé M, et al. Closed-loop oxygen control improves oxygen therapy in acute hypoxemic respiratory failure patients under high flow nasal oxygen: a randomized cross-over study (the HILOOP study). Crit Care. 2022;26(1):108. Published 2022 Apr 14. doi:10.1186/s13054-022-03970-w1​, Atakul G, Ceylan G, Sandal O, et al. Closed-loop oxygen usage during invasive mechanical ventilation of pediatric patients (CLOUDIMPP): a randomized controlled cross-over study. Front Med (Lausanne). 2024;11:1426969. Published 2024 Sep 10. doi:10.3389/fmed.2024.14269692​, Sandal O, Ceylan G, Topal S, et al. Closed-loop oxygen control improves oxygenation in pediatric patients under high-flow nasal oxygen-A randomized crossover study. Front Med (Lausanne). 2022;9:1046902. Published 2022 Nov 16. doi:10.3389/fmed.2022.10469023​).

Patienten mit ARDS weisen oft abrupte Veränderungen in der Lungenfunktion auf, weswegen die Sauerstoffeinstellung am Beatmungsgerät für eine angemessene Oxygenierung häufig angepasst werden muss. In Kombination mit einem adäquaten PEEP-Management kann O2 assist schnell auf diese Veränderungen reagieren und sicherstellen, dass sich der Patient stets innerhalb des optimalen SpO2-Zielbereichs befindet (Soydan E, Ceylan G, Topal S, et al. Automated closed-loop FiO2 titration increases the percentage of time spent in optimal zones of oxygen saturation in pediatric patients-A randomized crossover clinical trial. Front Med (Lausanne). 2022;9:969218. Published 2022 Aug 25. doi:10.3389/fmed.2022.9692184​).

 

Bei Patienten mit Bronchiolitis können eine Entzündung der Atemwege und die Produktion von Schleim eine Hypoxämie hervorrufen (Erickson EN, Bhakta RT, Tristram D, Mendez MD. Pediatric Bronchiolitis. In: StatPearls. Treasure Island (FL): StatPearls Publishing; January 12, 2025.7​). Das bedeutet, dass die Therapie stark von der Interaktion zwischen FiO2 und PEEP abhängt, was zu sich ständig verändernden SpO2-Werten führt (Roca O, Caritg O, Santafé M, et al. Closed-loop oxygen control improves oxygen therapy in acute hypoxemic respiratory failure patients under high flow nasal oxygen: a randomized cross-over study (the HILOOP study). Crit Care. 2022;26(1):108. Published 2022 Apr 14. doi:10.1186/s13054-022-03970-w1​, Atakul G, Ceylan G, Sandal O, et al. Closed-loop oxygen usage during invasive mechanical ventilation of pediatric patients (CLOUDIMPP): a randomized controlled cross-over study. Front Med (Lausanne). 2024;11:1426969. Published 2024 Sep 10. doi:10.3389/fmed.2024.14269692​, Sandal O, Ceylan G, Topal S, et al. Closed-loop oxygen control improves oxygenation in pediatric patients under high-flow nasal oxygen-A randomized crossover study. Front Med (Lausanne). 2022;9:1046902. Published 2022 Nov 16. doi:10.3389/fmed.2022.10469023​, Soydan E, Ceylan G, Topal S, et al. Automated closed-loop FiO2 titration increases the percentage of time spent in optimal zones of oxygen saturation in pediatric patients-A randomized crossover clinical trial. Front Med (Lausanne). 2022;9:969218. Published 2022 Aug 25. doi:10.3389/fmed.2022.9692184​). Indem O2 assist den verabreichten Sauerstoff an die tatsächlichen aktuellen Bedürfnisse des Patienten anpasst, trägt die Funktion dazu bei, den SpO2-Wert im gewünschten Zielbereich zu halten (Roca O, Caritg O, Santafé M, et al. Closed-loop oxygen control improves oxygen therapy in acute hypoxemic respiratory failure patients under high flow nasal oxygen: a randomized cross-over study (the HILOOP study). Crit Care. 2022;26(1):108. Published 2022 Apr 14. doi:10.1186/s13054-022-03970-w1​, Atakul G, Ceylan G, Sandal O, et al. Closed-loop oxygen usage during invasive mechanical ventilation of pediatric patients (CLOUDIMPP): a randomized controlled cross-over study. Front Med (Lausanne). 2024;11:1426969. Published 2024 Sep 10. doi:10.3389/fmed.2024.14269692​, Sandal O, Ceylan G, Topal S, et al. Closed-loop oxygen control improves oxygenation in pediatric patients under high-flow nasal oxygen-A randomized crossover study. Front Med (Lausanne). 2022;9:1046902. Published 2022 Nov 16. doi:10.3389/fmed.2022.10469023​, Soydan E, Ceylan G, Topal S, et al. Automated closed-loop FiO2 titration increases the percentage of time spent in optimal zones of oxygen saturation in pediatric patients-A randomized crossover clinical trial. Front Med (Lausanne). 2022;9:969218. Published 2022 Aug 25. doi:10.3389/fmed.2022.9692184​).

Klinische Nachweise

Darstellung von O2 assist

Gibt es Beweise? Klinische Nachweise im Überblick

O2 assist bietet dem medizinischen Fachpersonal erhebliche Vorteile und unterstützt es dabei, seine Ziele und Protokolle für die Sauerstofftherapie einzuhalten. Studien haben gezeigt, dass ein kontinuierliches Oxygenierungsmanagement Folgendes bewirken kann:

Beim Sauerstoffmanagement mit O2 assist verbringt der Patient mehr Zeit innerhalb des SpO2-Zielbereichs als bei manuellen Anpassungen (Roca O, Caritg O, Santafé M, et al. Closed-loop oxygen control improves oxygen therapy in acute hypoxemic respiratory failure patients under high flow nasal oxygen: a randomized cross-over study (the HILOOP study). Crit Care. 2022;26(1):108. Published 2022 Apr 14. doi:10.1186/s13054-022-03970-w1​, Sandal O, Ceylan G, Topal S, et al. Closed-loop oxygen control improves oxygenation in pediatric patients under high-flow nasal oxygen-A randomized crossover study. Front Med (Lausanne). 2022;9:1046902. Published 2022 Nov 16. doi:10.3389/fmed.2022.10469023​, Mól CG, Vieira AGDS, Garcia BMSP, et al. Closed-loop oxygen control for critically ill patients--A systematic review and meta-analysis. PLoS One. 2024;19(6):e0304745. Published 2024 Jun 12. doi:10.1371/journal.pone.03047455​, Trottier M, Bouchard PA, L'Her E, Lellouche F. Automated Oxygen Titration During CPAP and Noninvasive Ventilation in Healthy Subjects With Induced Hypoxemia. Respir Care. 2023;68(11):1553-1560. doi:10.4187/respcare.098666​). Damit können Sie die Therapie besser mit Ihren Protokollen und Richtlinien abgleichen.

Studien haben gezeigt, dass das Risiko einer Hypoxämie und Hyperoxämie verringert wird, je mehr Zeit der Patient innerhalb des SpO2-Zielbereichs verbringt. Dies kann zu besseren Behandlungsergebnissen beim Patienten führen (Roca O, Caritg O, Santafé M, et al. Closed-loop oxygen control improves oxygen therapy in acute hypoxemic respiratory failure patients under high flow nasal oxygen: a randomized cross-over study (the HILOOP study). Crit Care. 2022;26(1):108. Published 2022 Apr 14. doi:10.1186/s13054-022-03970-w1​, Atakul G, Ceylan G, Sandal O, et al. Closed-loop oxygen usage during invasive mechanical ventilation of pediatric patients (CLOUDIMPP): a randomized controlled cross-over study. Front Med (Lausanne). 2024;11:1426969. Published 2024 Sep 10. doi:10.3389/fmed.2024.14269692​, Mól CG, Vieira AGDS, Garcia BMSP, et al. Closed-loop oxygen control for critically ill patients--A systematic review and meta-analysis. PLoS One. 2024;19(6):e0304745. Published 2024 Jun 12. doi:10.1371/journal.pone.03047455, Trottier M, Bouchard PA, L'Her E, Lellouche F. Automated Oxygen Titration During CPAP and Noninvasive Ventilation in Healthy Subjects With Induced Hypoxemia. Respir Care. 2023;68(11):1553-1560. doi:10.4187/respcare.098666​​). Indem O2 assist eine konstante Sauerstoffkonzentration aufrecht erhält, kann die Funktion dazu beitragen, das Auftreten dieser und begleitender Komplikationen zu verhindern (Roca O, Caritg O, Santafé M, et al. Closed-loop oxygen control improves oxygen therapy in acute hypoxemic respiratory failure patients under high flow nasal oxygen: a randomized cross-over study (the HILOOP study). Crit Care. 2022;26(1):108. Published 2022 Apr 14. doi:10.1186/s13054-022-03970-w1​, Sandal O, Ceylan G, Topal S, et al. Closed-loop oxygen control improves oxygenation in pediatric patients under high-flow nasal oxygen-A randomized crossover study. Front Med (Lausanne). 2022;9:1046902. Published 2022 Nov 16. doi:10.3389/fmed.2022.10469023​, Mól CG, Vieira AGDS, Garcia BMSP, et al. Closed-loop oxygen control for critically ill patients--A systematic review and meta-analysis. PLoS One. 2024;19(6):e0304745. Published 2024 Jun 12. doi:10.1371/journal.pone.03047455​).

Ein kontinuierliches Oxygenierungsmanagement hält die Sauerstoffsättigung wirksamer im Zielbereich als eine manuelle Titration des Sauerstoffs und erfordert weniger Eingriffe durch das Pflegepersonal (Atakul G, Ceylan G, Sandal O, et al. Closed-loop oxygen usage during invasive mechanical ventilation of pediatric patients (CLOUDIMPP): a randomized controlled cross-over study. Front Med (Lausanne). 2024;11:1426969. Published 2024 Sep 10. doi:10.3389/fmed.2024.14269692​, Trottier M, Bouchard PA, L'Her E, Lellouche F. Automated Oxygen Titration During CPAP and Noninvasive Ventilation in Healthy Subjects With Induced Hypoxemia. Respir Care. 2023;68(11):1553-1560. doi:10.4187/respcare.098666​).

Für Kontrolle und Transparenz

Darstellung von O2 assist Darstellung von O2 assist

Startklar. An Ihre Bedürfnisse anpassbar

 

O2 assist arbeitet mit voreingestellten Werten für den SpO2-Zielbereich und die Notfallgrenzwerte. Sie können in das Fenster „Anpassen“ wechseln, um diese voreingestellten Werte an die individuellen Zustände des Patienten und Ihre Protokolle anzupassen.

Eine O2-Warnung weist Sie darauf hin, wenn der Sauerstoffbedarf des Patienten einen vom Anwender eingestellten Schwellenwert erreicht. Dies ermöglicht ein zeitnahes Einschreiten in die Therapie wie die Optimierung der PEEP-Werte, Umlagerung des Patienten, Sedierung oder Verabreichung von Medikamenten.

Screenshot von O2 assist auf dem HAMILTON-C1

Das Gesamtbild. Wichtige Informationen auf einen Blick.

  1. SpO2-Balken: Zeigt den SpO2-Wert des Patienten in Echtzeit sowie den Zielbereich und die Notfallgrenzwerte.
  2. Parameter „Sauerst.“: Zeigt die aktuelle Sauerstoffeinstellung. Schnell rotierende Kometen weisen darauf hin, dass der Wert gerade angepasst wird. Der Timer links vom Parameter „Sauerst.“ zeigt die verbleibende Zeit an, bis die Einstellung angepasst ist.
  3. SpO2-Status des Patienten: Zeigt die aktuelle Messung, die Signalqualität und das Plethysmogramm.

Verfügbarkeit

O2 assist ist als Option beim HAMILTON-C1, HAMILTON-T1 und HAMILTON-HF90 verfügbar.

Fußnoten

  • A. Nicht für alle Märkte verfügbar.
  • B. Mit Ausnahme von CPR und INTELLiVENT®-ASV®.

Referenzen

  1. 1. Roca O, Caritg O, Santafé M, et al. Closed-loop oxygen control improves oxygen therapy in acute hypoxemic respiratory failure patients under high flow nasal oxygen: a randomized cross-over study (the HILOOP study). Crit Care. 2022;26(1):108. Published 2022 Apr 14. doi:10.1186/s13054-022-03970-w
  2. 2. Atakul G, Ceylan G, Sandal O, et al. Closed-loop oxygen usage during invasive mechanical ventilation of pediatric patients (CLOUDIMPP): a randomized controlled cross-over study. Front Med (Lausanne). 2024;11:1426969. Published 2024 Sep 10. doi:10.3389/fmed.2024.1426969
  3. 3. Sandal O, Ceylan G, Topal S, et al. Closed-loop oxygen control improves oxygenation in pediatric patients under high-flow nasal oxygen-A randomized crossover study. Front Med (Lausanne). 2022;9:1046902. Published 2022 Nov 16. doi:10.3389/fmed.2022.1046902
  4. 4. Soydan E, Ceylan G, Topal S, et al. Automated closed-loop FiO2 titration increases the percentage of time spent in optimal zones of oxygen saturation in pediatric patients-A randomized crossover clinical trial. Front Med (Lausanne). 2022;9:969218. Published 2022 Aug 25. doi:10.3389/fmed.2022.969218
  5. 5. Mól CG, Vieira AGDS, Garcia BMSP, et al. Closed-loop oxygen control for critically ill patients--A systematic review and meta-analysis. PLoS One. 2024;19(6):e0304745. Published 2024 Jun 12. doi:10.1371/journal.pone.0304745
  6. 6. Trottier M, Bouchard PA, L'Her E, Lellouche F. Automated Oxygen Titration During CPAP and Noninvasive Ventilation in Healthy Subjects With Induced Hypoxemia. Respir Care. 2023;68(11):1553-1560. doi:10.4187/respcare.09866
  7. 7. Erickson EN, Bhakta RT, Tristram D, Mendez MD. Pediatric Bronchiolitis. In: StatPearls. Treasure Island (FL): StatPearls Publishing; January 12, 2025.

Closed-loop oxygen control improves oxygen therapy in acute hypoxemic respiratory failure patients under high flow nasal oxygen: a randomized cross-over study (the HILOOP study).

Roca O, Caritg O, Santafé M, et al. Closed-loop oxygen control improves oxygen therapy in acute hypoxemic respiratory failure patients under high flow nasal oxygen: a randomized cross-over study (the HILOOP study). Crit Care. 2022;26(1):108. Published 2022 Apr 14. doi:10.1186/s13054-022-03970-w



BACKGROUND

We aimed to assess the efficacy of a closed-loop oxygen control in critically ill patients with moderate to severe acute hypoxemic respiratory failure (AHRF) treated with high flow nasal oxygen (HFNO).

METHODS

In this single-centre, single-blinded, randomized crossover study, adult patients with moderate to severe AHRF who were treated with HFNO (flow rate ≥ 40 L/min with FiO2 ≥ 0.30) were randomly assigned to start with a 4-h period of closed-loop oxygen control or 4-h period of manual oxygen titration, after which each patient was switched to the alternate therapy. The primary outcome was the percentage of time spent in the individualized optimal SpO2 range.

RESULTS

Forty-five patients were included. Patients spent more time in the optimal SpO2 range with closed-loop oxygen control compared with manual titrations of oxygen (96.5 [93.5 to 98.9] % vs. 89 [77.4 to 95.9] %; p < 0.0001) (difference estimate, 10.4 (95% confidence interval 5.2 to 17.2). Patients spent less time in the suboptimal range during closed-loop oxygen control, both above and below the cut-offs of the optimal SpO2 range, and less time above the suboptimal range. Fewer number of manual adjustments per hour were needed with closed-loop oxygen control. The number of events of SpO2 < 88% and < 85% were not significantly different between groups.

CONCLUSIONS

Closed-loop oxygen control improves oxygen administration in patients with moderate-to-severe AHRF treated with HFNO, increasing the percentage of time in the optimal oxygenation range and decreasing the workload of healthcare personnel. These results are especially relevant in a context of limited oxygen supply and high medical demand, such as the COVID-19 pandemic. Trial registration The HILOOP study was registered at www.

CLINICALTRIALS

gov under the identifier NCT04965844 .

Closed-loop oxygen usage during invasive mechanical ventilation of pediatric patients (CLOUDIMPP): a randomized controlled cross-over study.

Atakul G, Ceylan G, Sandal O, et al. Closed-loop oxygen usage during invasive mechanical ventilation of pediatric patients (CLOUDIMPP): a randomized controlled cross-over study. Front Med (Lausanne). 2024;11:1426969. Published 2024 Sep 10. doi:10.3389/fmed.2024.1426969



BACKGROUND

The aim of this study is the evaluation of a closed-loop oxygen control system in pediatric patients undergoing invasive mechanical ventilation (IMV).

METHODS

Cross-over, multicenter, randomized, single-blind clinical trial. Patients between the ages of 1 month and 18 years who were undergoing IMV therapy for acute hypoxemic respiratory failure (AHRF) were assigned at random to either begin with a 2-hour period of closed-loop oxygen control or manual oxygen titrations. By using closed-loop oxygen control, the patients' SpO2 levels were maintained within a predetermined target range by the automated adjustment of the FiO2. During the manual oxygen titration phase of the trial, healthcare professionals at the bedside made manual changes to the FiO2, while maintaining the same target range for SpO2. Following either period, the patient transitioned to the alternative therapy. The outcomes were the percentage of time spent in predefined SpO2 ranges ±2% (primary), FiO2, total oxygen use, and the number of manual adjustments.

FINDINGS

The median age of included 33 patients was 17 (13-55.5) months. In contrast to manual oxygen titrations, patients spent a greater proportion of time within a predefined optimal SpO2 range when the closed-loop oxygen controller was enabled (95.7% [IQR 92.1-100%] vs. 65.6% [IQR 41.6-82.5%]), mean difference 33.4% [95%-CI 24.5-42%]; P < 0.001). Median FiO2 was lower (32.1% [IQR 23.9-54.1%] vs. 40.6% [IQR 31.1-62.8%]; P < 0.001) similar to total oxygen use (19.8 L/h [IQR 4.6-64.8] vs. 39.4 L/h [IQR 16.8-79]; P < 0.001); however, median SpO2/FiO2 was higher (329.4 [IQR 180-411.1] vs. 246.7 [IQR 151.1-320.5]; P < 0.001) with closed-loop oxygen control. With closed-loop oxygen control, the median number of manual adjustments reduced (0.0 [IQR 0.0-0.0] vs. 1 [IQR 0.0-2.2]; P < 0.001).

CONCLUSION

Closed-loop oxygen control enhances oxygen therapy in pediatric patients undergoing IMV for AHRF, potentially leading to more efficient utilization of oxygen. This technology also decreases the necessity for manual adjustments, which could reduce the workloads of healthcare providers.

CLINICAL TRIAL REGISTRATION

This research has been submitted to ClinicalTrials.gov (NCT05714527).

Closed-loop oxygen control improves oxygenation in pediatric patients under high-flow nasal oxygen-A randomized crossover study.

Sandal O, Ceylan G, Topal S, et al. Closed-loop oxygen control improves oxygenation in pediatric patients under high-flow nasal oxygen-A randomized crossover study. Front Med (Lausanne). 2022;9:1046902. Published 2022 Nov 16. doi:10.3389/fmed.2022.1046902



BACKGROUND

We assessed the effect of a closed-loop oxygen control system in pediatric patients receiving high-flow nasal oxygen therapy (HFNO).

METHODS

A multicentre, single-blinded, randomized, and cross-over study. Patients aged between 1 month and 18 years of age receiving HFNO for acute hypoxemic respiratory failure (AHRF) were randomly assigned to start with a 2-h period of closed-loop oxygen control or a 2-h period of manual oxygen titrations, after which the patient switched to the alternative therapy. The endpoints were the percentage of time spent in predefined SpO2 ranges (primary), FiO2, SpO2/FiO2, and the number of manual adjustments.

FINDINGS

We included 23 patients, aged a median of 18 (3-26) months. Patients spent more time in a predefined optimal SpO2 range when the closed-loop oxygen controller was activated compared to manual oxygen titrations [91⋅3% (IQR 78⋅4-95⋅1%) vs. 63⋅0% (IQR 44⋅4-70⋅7%)], mean difference [28⋅2% (95%-CI 20⋅6-37⋅8%); P < 0.001]. Median FiO2 was lower [33⋅3% (IQR 26⋅6-44⋅6%) vs. 42⋅6% (IQR 33⋅6-49⋅9%); P = 0.07], but median SpO2/FiO2 was higher [289 (IQR 207-348) vs. 194 (IQR 98-317); P = 0.023] with closed-loop oxygen control. The median number of manual adjustments was lower with closed-loop oxygen control [0⋅0 (IQR 0⋅0-0⋅0) vs. 0⋅5 (IQR 0⋅0-1⋅0); P < 0.001].

CONCLUSION

Closed-loop oxygen control improves oxygenation therapy in pediatric patients receiving HFNO for AHRF and potentially leads to more efficient oxygen use. It reduces the number of manual adjustments, which may translate into decreased workloads of healthcare providers.

CLINICAL TRIAL REGISTRATION

[www.ClinicalTrials.gov], identifier [NCT05032365].

Automated closed-loop FiO2 titration increases the percentage of time spent in optimal zones of oxygen saturation in pediatric patients-A randomized crossover clinical trial.

Soydan E, Ceylan G, Topal S, et al. Automated closed-loop FiO2 titration increases the percentage of time spent in optimal zones of oxygen saturation in pediatric patients-A randomized crossover clinical trial. Front Med (Lausanne). 2022;9:969218. Published 2022 Aug 25. doi:10.3389/fmed.2022.969218



Introduction

We aimed to compare automated ventilation with closed-loop control of the fraction of inspired oxygen (FiO2) to automated ventilation with manual titrations of the FiO2 with respect to time spent in predefined pulse oximetry (SpO2) zones in pediatric critically ill patients.

Methods

This was a randomized crossover clinical trial comparing Adaptive Support Ventilation (ASV) 1.1 with use of a closed-loop FiO2 system vs. ASV 1.1 with manual FiO2 titrations. The primary endpoint was the percentage of time spent in optimal SpO2 zones. Secondary endpoints included the percentage of time spent in acceptable, suboptimal and unacceptable SpO2 zones, and the total number of FiO2 changes per patient.

Results

We included 30 children with a median age of 21 (11-48) months; 12 (40%) children had pediatric ARDS. The percentage of time spent in optimal SpO2 zones increased with use of the closed-loop FiO2 controller vs. manual oxygen control [96.1 (93.7-98.6) vs. 78.4 (51.3-94.8); P < 0.001]. The percentage of time spent in acceptable, suboptimal and unacceptable zones decreased. Findings were similar with the use of closed-loop FiO2 controller compared to manual titration in patients with ARDS [95.9 (81.6-98.8) vs. 78 (49.5-94.8) %; P = 0.027]. The total number of closed-loop FiO2 changes per patient was 52 (11.8-67), vs. the number of manual changes 1 (0-2), (P < 0.001).

Conclusion

In this randomized crossover trial in pediatric critically ill patients under invasive ventilation with ASV, use of a closed-loop control of FiO2 titration increased the percentage of time spent within in optimal SpO2 zones, and increased the total number of FiO2 changes per patient.

Clinical trial registration

ClinicalTrials.gov, identifier: NCT04568642.

Closed-loop oxygen control for critically ill patients--A systematic review and meta-analysis.

Mól CG, Vieira AGDS, Garcia BMSP, et al. Closed-loop oxygen control for critically ill patients--A systematic review and meta-analysis. PLoS One. 2024;19(6):e0304745. Published 2024 Jun 12. doi:10.1371/journal.pone.0304745



BACKGROUND

The impact of closed-loop control systems to titrate oxygen flow in critically ill patients, including their effectiveness, efficacy, workload and safety, remains unclear. This systematic review investigated the utilization of closed-loop oxygen systems for critically ill patients in comparison to manual oxygen titration systems focusing on these topics.

METHODS AND FINDINGS

A search was conducted across several databases including MEDLINE, CENTRAL, EMBASE, LILACS, CINAHL, LOVE, ClinicalTrials.gov, and the World Health Organization on March 3, 2022, with subsequent updates made on June 27, 2023. Evidence databases were searched for randomized clinical parallel or crossover studies investigating closed-loop oxygen control systems for critically ill patients. This systematic review and meta-analysis was performed following the Preferred Reporting Items for Systematic Review and Meta-analysis guidelines. The analysis was conducted using Review Manager software, adopting the mean difference or standardized mean difference with a 95% confidence interval (95% CI) for continuous variables or risk ratio with 95% CI for dichotomous outcomes. The main outcome of interest was the percentage of time spent in the peripheral arterial oxygen saturation target. Secondary outcomes included time for supplemental oxygen weaning, length of stay, mortality, costs, adverse events, and workload of healthcare professional. A total of 37 records from 21 studies were included in this review with a total of 1,577 participants. Compared with manual oxygen titration, closed-loop oxygen control systems increased the percentage of time in the prescribed SpO2 target, mean difference (MD) 25.47; 95% CI 19.7, 30.0], with moderate certainty of evidence. Current evidence also shows that closed-loop oxygen control systems have the potential to reduce the percentage of time with hypoxemia (MD -0.98; 95% CI -1.68, -0.27) and healthcare workload (MD -4.94; 95% CI -7.28, -2.61) with low certainty of evidence.

CONCLUSION

Closed-loop oxygen control systems increase the percentage of time in the preferred SpO2 targets and may reduce healthcare workload.

TRIAL REGISTRATION

PROSPERO: CRD42022306033.

Automated Oxygen Titration During CPAP and Noninvasive Ventilation in Healthy Subjects With Induced Hypoxemia.

Trottier M, Bouchard PA, L'Her E, Lellouche F. Automated Oxygen Titration During CPAP and Noninvasive Ventilation in Healthy Subjects With Induced Hypoxemia. Respir Care. 2023;68(11):1553-1560. doi:10.4187/respcare.09866



BACKGROUND

Automated oxygen titration to maintain a stable SpO2 has been developed for spontaneously breathing patients but has not been evaluated during CPAP and noninvasive ventilation (NIV).

METHODS

We performed a randomized controlled crossover, double-blind study on 10 healthy subjects with induced hypoxemia during 3 situations: spontaneous breathing with oxygen support, CPAP (5 cm H2O), and NIV (7/3 cm H2O). We conducted in random order 3 dynamic hypoxic challenges of 5 min (FIO2 0.08 ± 0.02, 0.11± 0.02, and 0.14 ± 0.02). For each condition, we compared automated oxygen titration and manual oxygen titration by experienced respiratory therapists (RTs), with the aim to maintain the SpO2 at 94 ± 2%. In addition, we included 2 subjects hospitalized for exacerbation of COPD under NIV and a subject managed after bariatric surgery with CPAP and automated oxygen titration.

RESULTS

The percentage of time in the SpO2 target was higher with automated compared with manual oxygen titration for all conditions, on average 59.6 ± 22.8% compared to 44.3 ± 23.9% (P = .004). Hyperoxemia (SpO2 > 96%) was less frequent with automated titration for each mode of oxygen administration (24.0 ± 24.4% vs 39.1 ± 25.3%, P < .001). During the manual titration periods, the RT made several changes to oxygen flow (5.1 ± 3.3 interventions that lasted 122 ± 70 s/period) compared to none during the automated titration to maintain oxygenation in the targeted SpO2 . Time in the SpO2 target was higher with stable hospitalized subjects in comparison with healthy subjects under dynamic-induced hypoxemia.

CONCLUSIONS

In this proof-of-concept study, automated oxygen titration was used during CPAP and NIV. The performances to maintain the SpO2 target were significantly better compared to manual oxygen titration in the setting of this study protocol. This technology may allow decreasing the number of manual interventions for oxygen titration during CPAP and NIV.

Pediatric Bronchiolitis

Erickson EN, Bhakta RT, Tristram D, Mendez MD. Pediatric Bronchiolitis. In: StatPearls. Treasure Island (FL): StatPearls Publishing; January 12, 2025.

Pediatric bronchiolitis is a lower respiratory tract infection primarily caused by viral pathogens. This condition is among the most common illnesses in children aged 2 or younger and the leading cause of hospitalization in this age group. Bronchiolitis is primarily a clinical diagnosis, but viral testing may be necessary in severe cases requiring hospitalization. Identifying the specific viral cause can support infection control measures and prevent nosocomial spread. While most hospitalized infants have identifiable risk factors that increase their susceptibility, otherwise healthy infants and older children can also develop severe infections that necessitate hospitalization. In severe cases, infants with significant respiratory compromise may require mechanical ventilation. Respiratory syncytial virus (RSV) is the primary cause of bronchiolitis, although nearly all respiratory viruses can cause the condition in infants and young children. RSV bronchiolitis significantly contributes to the global disease burden, with approximately 33 million cases annually, 95% of which occur in low-income countries. Recent estimates indicate that around 3.6 million infants are hospitalized for bronchiolitis each year, with up to 118,000 deaths attributed to the condition or related complications. Unfortunately, half of these deaths occur within the first 6 months of life, and 97% of all infant deaths from bronchiolitis are reported in low- and middle-income countries.